Cours de chimie générale avancée (CH160)

énoncé de la série 6

Exercice 1 (8.1.4)

Calculer les variations d'entropie associées aux réactions suivantes aux conditions standard à 25°C et donner une interprétation des valeurs obtenues

a)
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

b)
$$6 \text{ C (s)} + 3 \text{ H}_2 \text{ (g)} \rightarrow \text{ C}_6 \text{H}_6 (\ell)$$

c) Fe (s) + 0.5
$$O_2 \rightarrow FeO$$
 (s)

d)
$$H_2(g) + Cl_2(g) \rightarrow 2 HCl(g)$$

Exercice 2

Soit la réaction dans un récipient fermé:

$$4 \text{ CuO}(s) \iff 2 \text{ Cu}_2\text{O}(s) + \text{O}_2(g)$$

- a) La décomposition de CuO est-elle exothermique ou endothermique aux conditions standard à 25 °C ?
- b) La décomposition de CuO est-elle spontanée à 25 °C ? Si non, peut-elle le devenir ? Dans quelles conditions ? Justifiez votre réponse.

Données	CuO(s)	$Cu_2O(s)$	$O_2(g)$
$\Delta_{\rm f} {\rm H}^{\rm o}[{\rm kJ~mol^{-1}}]$	- 157,3	- 168,6	
S^{o} [J mol ⁻¹ K ⁻¹]	42,6	93,1	205,1

Exercice 3

La réaction de formation de l'ozone O_3 (g) à partir de l'oxygène O_2 (g) est-elle spontanée aux conditions standard à 25°C. Donnée: $\Delta_r H^0 = 285$ kJ/mol (95 kJ/mol O_2).

$$3 O_2(g) \rightarrow 2 O_3(g)$$

Exercice 4

Soit la réaction suivante aux conditions standard

$$NH_4NO_3(s) \implies N_2(g) + 1.5 O_2(g) + 2H_2(g)$$

Donnée :
$$\Delta_f H^0 (NH_4NO_3(s)) = -365 \text{ kJ/mol}$$

Indiquer la ou les affirmation(s) correcte(s) dans la liste suivante (en considérant la réaction dans le sens direct)

a)
$$\Delta_r H^0 > 0$$
b) $\Delta_r S^0 > 0$
c) la réaction est spontanée à toutes les températures
d) la réaction est spontanée aux températures supérieures à $\Delta_r H^0 / \Delta_r S^0$

Exercice 5 (7.1.6, modifié)

Soit la réaction hétérogène à l'équilibre

$$CaCO_3(s)$$
 \leftarrow $CaO(s) + CO_2(g)$

A 800°C, la pression de CO₂ dans un réacteur fermé est de 0,22 bar. Calculer la constante d'équilibre K à cette température. (La pression de référence $P^0 = 1$ bar)

Exercice 6 (7.2.5-modifié)

On enferme 0,2 g de CO₂ dans un récipient d'un litre, initialement vide, maintenu à 2500 K.

Le CO₂ se dissocie selon la réaction

$$2CO_2(g)$$
 $2CO(g) + O_2(g)$

Calculer la constante d'équilibre K à cette température, sachant que la pression totale dans le récipient, mesurée à l'équilibre est 1bar. La pression de référence $P^0 = 1$ bar.

Exercice 7 (7.2.7 modifié)

Dans un récipient fermé de 5 L, on mélange 12 g de SO₃, 5 g de O₂ et 8 g de SO₂ à 700°C

$$2 SO_2(g) + O_2(g) \implies 2 SO_3(g)$$

Si la constante d'équilibre K de la réaction vaut 3.46 à la température d'expérience. ($P^0 = 1$ bar)

- a) Le système est-il à l'équilibre ? Sinon, dans quel sens la réaction évolue-t-elle ?
- b) Une fois l'équilibre atteint, dans quel sens la réaction aura-t-elle tendance à évoluer si
 - on chauffait le système en sachant que la réaction est exothermique
 - on augmentait la pression du système (par diminution du volume)
 - on augmentait la quantité de SO₂

<u>Exercice 8</u> (7.2.8)

La constante d'équilibre de la réaction

$$CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$$

à 986 °C est de 0,63. Un mélange de 1 mole de vapeur d'eau et de 3 moles de CO atteint son équilibre sous une pression totale de 2 bar. (La pression de référence P⁰ = 1 bar)

- a) Combien y-a-t-il de moles de H₂ à l'équilibre?
- b) Quelle est la pression partielle de chacun des gaz dans le mélange à l'équilibre?

Exercice 9 (8.1.10)

Soit la réaction de décomposition dans un milieu réactionnel fermé:

- a) Calculer $\Delta_r H^0$, $\Delta_r S^0$ et $\Delta_r G^0$ de cette réaction à 25°C.
- b) Si la réaction n'est pas spontanée dans ces conditions, estimer la température à laquelle elle le devient.
- c) Quelle est l'expression de K?
- d) Quel effet aura l'ajout de NaHCO3 solide si le réacteur est fermé ou s'il est ouvert ?

Données (à 25°C)

	Δ _f H ^O [kJ mol ⁻¹]	S ^o [J K ⁻¹ mol ⁻¹]
NaHCO ₃ (s)	- 950,8	101,7
Na ₂ CO ₃ (s)	- 1130,7	138,8
CO ₂ (g)	- 393,5	213,7
H ₂ O (g)	- 241,8	188,8

Exercice 10 (8.2.9, modifié)

La réaction de vaporisation du brome est la suivante :

$$Br_2(\ell) \iff Br_2(g)$$

- a) Est-elle spontanée aux conditions standard à 25°C?
- b) Calculer la pression de vapeur du brome à 25° C ($P^{\circ} = 1$ bar).
- c) Comment varie qualitativement l'entropie du système pendant la vaporisation ?

Donnée : $\Delta_f G^O(Br_2(g)) = 3,1 \text{ kJ mol}^{-1}$

Exercice 11

On enferme un échantillon de phosgène COCl ₂ (g) dans un récipient (volume of 395 K et on mesure une pression initiale (avant équilibre) de 0.35 bar. Calcule pressions partielles de chaque gaz (Cl ₂ , CO, COCl ₂) ainsi que la pression totale à l'équilibre (T=395 K)	r les			
Données : $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ $K = 0.22$, pression de référence $P^0 = Considérer$ que les valeurs numériques des activités sont égales à celles des prepartielles.				
Exercice 12				
Indiquer quelle(s) est (sont) le(s) affirmation(s) correcte(s)				
 b) Si la constante d'équilibre K est plus petite que 1, Δ_rG⁰ est négatif c) Au début d'une réaction, si le quotient réactionnel Q est plus petit que la constante d'équilibre K, la réaction se déroulera de gauche à droite 				
Exercice 13				
Soit la réaction suivante				
$H_2O(g) + \frac{1}{2} O_2(g) \iff H_2O_2(g)$				
Donnée : la constante d'équilibre augmente avec la température.				
Indiquer quelle(s) est (sont) le(s) affirmation(s) correcte(s) pour la réaction directe (de gauche à droite) aux conditions standard:				
 a) l'entropie de réaction diminue b) la réaction est endothermique c) la réaction est spontanée à haute température d) la réaction est spontanée à basse température 	_ _ _			